Take difference of two paired bi-directional gene set scores
Source:R/aggregateGeneSetScores.R
aggregateGeneSetScores.Rd
Replaces gene set results from paired up- and down- gene sets with the difference of the up-regulated genes and down-regulated genes
Arguments
- K2res
A K2 class object.
- aggList
A named list where each item is a character vector of length, 2, comprising the name of the 'up' gene set, and the name of the 'down' gene set.
References
Reed ER, Monti S (2021). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Nucleic Acids Research. doi:10.1093/nar/gkab552 , https://pubmed.ncbi.nlm.nih.gov/34226941/. Hanzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14(1), 7. ISSN 1471-2105, doi:10.1186/1471-2105-14-7 , http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7.
Examples
## Read in ExpressionSet object
library(Biobase)
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
#> union, unique, unsplit, which.max, which.min
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
data(sample.ExpressionSet)
## Pre-process and create K2 object
K2res <- K2preproc(sample.ExpressionSet)
#> No cohorts specified and clustFunc = 'cKmeansDownsampleSqrt' . Setting clustFunc = 'hclustWrapper'
#> No cohorts specified and recalcDataMatrix = TRUE. Setting recalcDataMatrix = FALSE
#> No cohorts specified and featMetric = 'F'. Setting featMetric = 'mad'
## Run K2 Taxonomer algorithm
K2res <- K2tax(K2res,
stabThresh=0.5)
## Run differential analysis on each partition
K2res <- runDGEmods(K2res)
#> Running DGE for partition:
#> 1 / 10
#> 2 / 10
#> 3 / 10
#> 4 / 10
#> 5 / 10
#> 6 / 10
#> 7 / 10
#> 8 / 10
#> 9 / 10
#> 10 / 10
## Create dummy set of gene sets
DGEtable <- getDGETable(K2res)
genes <- unique(DGEtable$gene)
genesetsMadeUp <- list(
GS1=genes[1:50],
GS2=genes[51:100],
GS3=genes[101:150])
## Run gene set hyperenrichment
K2res <- runGSEmods(K2res,
genesets=genesetsMadeUp,
qthresh=0.1)
#> Error in runGSEmods(K2res, genesets = genesetsMadeUp, qthresh = 0.1): could not find function "runGSEmods"
## Run GSVA on genesets
K2res <- runGSVAmods(K2res,
ssGSEAalg='gsva',
ssGSEAcores=1,
verbose=FALSE)
#> Error in runGSVAmods(K2res, ssGSEAalg = "gsva", ssGSEAcores = 1, verbose = FALSE): could not find function "runGSVAmods"
## Aggregate paired gene sets
aggList <- list(c('GS12', 'GS1', 'GS2'))
K2res <- aggregateGeneSetscores(K2resaggList, K2res)
#> Error in aggregateGeneSetscores(K2resaggList, K2res): could not find function "aggregateGeneSetscores"