Create table differential analysis results from 'K2' object.
getDGETable(K2res)
K2res | An object of class K2. |
---|
A data.frame object with the following columns:
gene: The gene ids from the `ExpressionSet` object
coef: The difference between the means of each subgroup at a given partition
mean: The mean across all observations at the given partition
t: The test statistic estimated by the `limma` R package
pval: The p-value estimated by the `limma` R package
fdr: The multiple hypothesis corrected fdr p-value, adjusted across all partitions
B: The B-statistic estimated by the `limma` R package
edge: Indication of which subgroup the gene was assigned at a given partition
node: The identifier of the partition
direction: The direction of coefficient for the assigned gene
Reed ER, Monti S (2020). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Bioinformatics. doi: 10.1101/2020.11.05.370197 , http://biorxiv.org/lookup/doi/10.1101/2020.11.05.370197. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research, 43(7), e47--e47. ISSN 1362-4962, 0305-1048, doi: 10.1093/nar/gkv007 , http://academic.oup.com/nar/article/43/7/e47/2414268/limma-powers-differential-expression-analyses-for. Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289--300. ISSN 00359246, doi: 10.1111/j.2517-6161.1995.tb02031.x , http://doi.wiley.com/10.1111/j.2517-6161.1995.tb02031.x.
## Read in ExpressionSet object library(Biobase) data(sample.ExpressionSet) ## Pre-process and create K2 object K2res <- K2preproc(sample.ExpressionSet) ## Run K2 Taxonomer algorithm K2res <- K2tax(K2res, stabThresh=0.5) ## Run differential analysis on each partition K2res <- runDGEmods(K2res) ## Extract table of differential results head(getDGETable(K2res))#> gene coef mean t pval fdr B #> 1 31583_at 1519.99764 2819.34808 8.373340 1.046179e-08 3.536186e-05 -2.345377 #> 2 31546_at 1242.40521 1963.02569 8.138876 1.768093e-08 3.536186e-05 -2.384707 #> 3 31573_at 1229.79000 2034.80623 7.396055 9.781121e-08 1.250010e-04 -2.523671 #> 4 31511_at 1300.54170 3256.33615 7.292037 1.250010e-07 1.250010e-04 -2.545017 #> 5 31568_at 1422.44970 2866.91769 7.147891 1.760053e-07 1.408043e-04 -2.575418 #> 6 31607_at 57.28619 60.23165 8.151911 1.148684e-06 7.657893e-04 -3.781940 #> edge node direction #> 1 2 A up #> 2 2 A up #> 3 2 A up #> 4 2 A up #> 5 2 A up #> 6 2 C up