Adds hyperenrichment analysis results to the output of runDGEmods().

runGSVAmods(K2res, ssGSEAalg = NULL, ssGSEAcores = NULL, ...)

Arguments

K2res

An object of class K2. The output of runDGEmods().

ssGSEAalg

A character string, specifying which algorithm to use for running the gsva() function from the GSVA package. Options are 'gsva', 'ssgsea', 'zscore', and 'plage'. 'gsva' by default.

ssGSEAcores

Number of cores to use for running gsva() from the GSVA package. Default is 1.

...

Additional arguments passed onto GSVA::gsva()

Value

An object of class K2.

References

Reed ER, Monti S (2020). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Bioinformatics. doi: 10.1101/2020.11.05.370197 , http://biorxiv.org/lookup/doi/10.1101/2020.11.05.370197. Hanzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14(1), 7. ISSN 1471-2105, doi: 10.1186/1471-2105-14-7 , http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7.

Examples

## Read in ExpressionSet object library(Biobase) data(sample.ExpressionSet) ## Pre-process and create K2 object K2res <- K2preproc(sample.ExpressionSet) ## Run K2 Taxonomer algorithm K2res <- K2tax(K2res, stabThresh=0.5) ## Run differential analysis on each partition K2res <- runDGEmods(K2res) ## Create dummy set of gene sets DGEtable <- getDGETable(K2res) genes <- unique(DGEtable$gene) genesetsMadeUp <- list( GS1=genes[1:50], GS2=genes[51:100], GS3=genes[101:150]) ## Run gene set hyperenrichment K2res <- runGSEmods(K2res, genesets=genesetsMadeUp, qthresh=0.1) ## Run GSVA on genesets K2res <- runGSVAmods(K2res, ssGSEAalg='gsva', ssGSEAcores=1, verbose=FALSE)