Adds hyperenrichment analysis results to the output of runDGEmods().
runGSVAmods(K2res, ssGSEAalg = NULL, ssGSEAcores = NULL, ...)
K2res | An object of class K2. The output of runDGEmods(). |
---|---|
ssGSEAalg | A character string, specifying which algorithm to use for running the gsva() function from the GSVA package. Options are 'gsva', 'ssgsea', 'zscore', and 'plage'. 'gsva' by default. |
ssGSEAcores | Number of cores to use for running gsva() from the GSVA package. Default is 1. |
... | Additional arguments passed onto GSVA::gsva() |
An object of class K2.
Reed ER, Monti S (2020). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Bioinformatics. doi: 10.1101/2020.11.05.370197 , http://biorxiv.org/lookup/doi/10.1101/2020.11.05.370197. Hanzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14(1), 7. ISSN 1471-2105, doi: 10.1186/1471-2105-14-7 , http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7.
## Read in ExpressionSet object library(Biobase) data(sample.ExpressionSet) ## Pre-process and create K2 object K2res <- K2preproc(sample.ExpressionSet) ## Run K2 Taxonomer algorithm K2res <- K2tax(K2res, stabThresh=0.5) ## Run differential analysis on each partition K2res <- runDGEmods(K2res) ## Create dummy set of gene sets DGEtable <- getDGETable(K2res) genes <- unique(DGEtable$gene) genesetsMadeUp <- list( GS1=genes[1:50], GS2=genes[51:100], GS3=genes[101:150]) ## Run gene set hyperenrichment K2res <- runGSEmods(K2res, genesets=genesetsMadeUp, qthresh=0.1) ## Run GSVA on genesets K2res <- runGSVAmods(K2res, ssGSEAalg='gsva', ssGSEAcores=1, verbose=FALSE)