R/runDSSEmods.R
runDSSEmods.Rd
Adds limma differential analysis results of single-sample enrichment scores to to the output of K2tax().
runDSSEmods(K2res)
K2res | An object of class K2. The output of K2tax(). |
---|
An object of class K2.
Reed ER, Monti S (2020). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Bioinformatics. doi: 10.1101/2020.11.05.370197 , http://biorxiv.org/lookup/doi/10.1101/2020.11.05.370197. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research, 43(7), e47--e47. ISSN 1362-4962, 0305-1048, doi: 10.1093/nar/gkv007 , http://academic.oup.com/nar/article/43/7/e47/2414268/limma-powers-differential-expression-analyses-for. Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289--300. ISSN 00359246, doi: 10.1111/j.2517-6161.1995.tb02031.x , http://doi.wiley.com/10.1111/j.2517-6161.1995.tb02031.x. Hanzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14(1), 7. ISSN 1471-2105, doi: 10.1186/1471-2105-14-7 , http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7.
## Read in ExpressionSet object library(Biobase) data(sample.ExpressionSet) ## Pre-process and create K2 object K2res <- K2preproc(sample.ExpressionSet) ## Run K2 Taxonomer algorithm K2res <- K2tax(K2res, stabThresh=0.5) ## Run differential analysis on each partition K2res <- runDGEmods(K2res) ## Create dummy set of gene sets DGEtable <- getDGETable(K2res) genes <- unique(DGEtable$gene) genesetsMadeUp <- list( GS1=genes[1:50], GS2=genes[51:100], GS3=genes[101:150]) ## Run gene set hyperenrichment K2res <- runGSEmods(K2res, genesets=genesetsMadeUp, qthresh=0.1) ## Run GSVA on genesets K2res <- runGSVAmods(K2res, ssGSEAalg='gsva', ssGSEAcores=1, verbose=FALSE) ## Run differential analysis on GSVA results K2res <- runDSSEmods(K2res)