Skip to contents

Adds differential analysis results of single-sample enrichment scores to to the output of K2tax().

Usage

runDSSEmods(K2res, vehicle = NULL, variables = NULL, block = NULL)

Arguments

vehicle

The value in the cohort variable that contains the ID of observation to use as control. Default NULL if no vehicle to be used.

variables

Character. Columns in meta data of 'object' to control for in differential analyses.

block

Character. Block parameter in limma for modeling higherarchical data structure, such as multiple observations per individual.

Value

An object of class K2.

References

Reed ER, Monti S (2021). “Multi-resolution characterization of molecular taxonomies in bulk and single-cell transcriptomics data.” Nucleic Acids Research. doi:10.1093/nar/gkab552 , https://pubmed.ncbi.nlm.nih.gov/34226941/. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research, 43(7), e47--e47. ISSN 1362-4962, 0305-1048, doi:10.1093/nar/gkv007 , http://academic.oup.com/nar/article/43/7/e47/2414268/limma-powers-differential-expression-analyses-for. Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289--300. ISSN 00359246, doi:10.1111/j.2517-6161.1995.tb02031.x , http://doi.wiley.com/10.1111/j.2517-6161.1995.tb02031.x. Hanzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics, 14(1), 7. ISSN 1471-2105, doi:10.1186/1471-2105-14-7 , http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7.