Models

model.sw()

Simulate network via small world model

model.ff()

Simulate network via forest fire model

model.er()

Simulate network via erdos-renyi model

model.mer()

Simulate network via modular erdos-renyi model

model.pa()

Simulate network via preferential attachment model

model.mpa()

Simulate network via modular preferential attachment model

model.hpa()

Simulate diverging models through preferential attachment

model.kd()

Plot model degree distribution

model.sim()

Simulate multivariate Gaussian data for a model

model.layout()

Spring-embedded layout

model.simplify()

Removes loops, multi-edges, and isolated vertices from graph

model.plot()

Plot model

models.plot()

Plot one or more models highlighting differences

model.similarity()

Szymkiewicz–Simpson coefficient of edges

models.similarity()

Edge similarity of two or more graphs

Filtering

keep.var()

Keep variables with non-zero variance within subtypes

rank.var()

Rank variables by median absolute deviation across one or more subtypes

Constraints

mods.detect()

Wrapper for weighted gene co-expression analysis

me.get()

Module eigengenes from the kth principal component for all modules

mm.get()

Module memberships by correlation with eigengene for a module

mm.merged()

Wrapper to merge module memberships for the first two eigengenes

mod.plot()

Plot membership of all genes for one module

mods.plot()

Plot membership of all genes for all modules

fuzzy.mods()

Classify fuzzy modules with quadratic disciminant analysis

fuzzy.plot()

Visualize fuzzy module classification

fuzzy.predict()

Classify fuzzy membership for a module with quadratic discriminant analysis

Learning

bdg.estimate()

Wrapper for estimating posterior probabilities with bdgraph

bdg.islands()

Estimate connected components independently

bdg.metanet()

Estimate a meta-network from module eigengenes

blanket.new()

Create a new blanket covering the entire graph search space

blanket.lift()

Lifts the blanket from within or between modules

blanket.cred()

Computes complexity reduction of the blanket

blanket.inform()

Adds prior information where the blanket is lifted

Datasets

toy

Toy Data