FunOmS.Rmd
devtools::load_all(".")
OmicSignature
object from a json file
Alternatively, you can read and write the object in .rds
format as any other R objects.
OmS <- readJson(file.path(system.file("extdata", package = "OmicSignature"), "Myc_reduce_mice_liver_24m_OmS.json"))
#> [Success] OmicSignature object Myc_reduce_mice_liver_24m created.
OmicSignature
object into a json file
writeJson(OmS, "Myc_reduce_mice_liver_24m_OmS.json")
OmS
#> Signature Object:
#> Metadata:
#> adj_p_cutoff = 0.05
#> assay_type = transcriptomics
#> covariates = none
#> description = mice MYC reduced expression
#> direction_type = bi-directional
#> keywords = Myc, KO, longevity
#> organism = Mus Musculus
#> others = C57BL/6
#> phenotype = Myc_reduce
#> platform = GPL6246
#> PMID = 25619689
#> sample_type = liver
#> score_cutoff = 5
#> signature_name = Myc_reduce_mice_liver_24m
#> year = 2015
#> Metadata user defined fields:
#> animal_strain = C57BL/6
#> Signature:
#> Length (15)
#> Class (character)
#> Mode (character)
#> Differential Expression Data:
#> 884 x 9
OmicSignature
object
We can use new criterias to extract new signatures conveniently from
the OmicSignature Object, if it has difexp matrix
included.
For example, extract all features with a t-score with absolute value
higher than 5 and adj_p smaller than 0.01:
OmS$extractSignature("abs(score) > 5; adj_p < 0.01")
#> probe_id feature_name score direction
#> 1 10349648 ENSMUSG00000004552 14.762 +
#> 2 10345762 ENSMUSG00000026072 -13.543 -
#> 3 10353192 ENSMUSG00000025932 10.487 +
#> 4 10355259 ENSMUSG00000061816 -10.315 -
#> 5 10351477 ENSMUSG00000102418 8.818 +